2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
意大利航天员引用的《兰亭集序》,竟有这么多故事!******
中新网北京10月14日电(记者 王诗尧)“仰观宇宙之大,俯察品类之盛,所以游目骋怀,足以极视听之娱,信可乐也”。中国著名书法家王羲之所著《兰亭集序》中一句描绘宇宙景观的古文,近日出现在意大利女航天员萨曼萨·克里斯托福雷蒂的社交媒体上,她在发布一组太空摄影作品时配上了上述文字。
没想到这篇帖文一经发布便受到国内外网友热议,并获中国外交部发言人点赞。跨越千年,《兰亭集序》的影响力丝毫未减,再度成为时下文化热点。
这位意大利女航天员此前接受采访的视频截图“天下第一行书”
《兰亭序》又名《兰亭集序》,是晋代书法家王羲之在会稽(今绍兴)撰写,全文28行,共计324字,被誉为“天下第一行书”。
东晋穆帝永和九年(公元353年)三月三日,会稽内史王羲之邀约谢安、孙绰等41名文人雅士和家族子弟相聚山阴之兰亭,大家一起饮酒赋诗、畅叙幽情。会上26人赋诗41首,并聚诗成集,为《兰亭集》,王羲之乘兴为他们书写序文手稿,曰《兰亭集序》。
资料图为唐·冯承素(传)摹兰亭序帖卷。向一鹏 摄据说次日王羲之酒醒之后发现自己写得甚好,只是有几个字不满意,又复书序文十余遍,始终不得其妙。于是他涂改了几字,留下这篇被历代书界奉为极品的《兰亭集序》。
《兰亭集序》全文没有一个字写法相同,仅一个“之”字就有二十余种写法。明代书画家董其昌曾在《画禅室随笔》中写道:“右军《兰亭序》,章法为古今第一,其字皆为映带而生,或小或大,随手所如,皆入法则,所以为神品也。”
资料图:位于绍兴的兰亭书法博物馆 项菁 摄真迹下落不明 曾被唐太宗重金悬赏
然而,就是这件被誉为“贵越群品,古今莫二”的书法极品,真迹至今下落不明,流传作品皆为临摹之作。
其实,王羲之成为千古留名的“书圣”,与历代帝王对他的推崇离不开关系。而他的头号粉丝,就是唐太宗李世民。
唐代《徐氏法书记》记载:“太宗於右军之书,特留睿赏,贞观初下诏购求,殆尽遗逸”。彼时刚当上皇帝的唐太宗,就已经急不可待地筹划要把王羲之的全部作品买回来,可是最为著名的《兰亭集序》却怎么都找不到,于是命人到处搜集,并重金悬赏。
资料图:王羲之墓 项菁 摄早在《兰亭集序》写成之后,王羲之就把它视作传家宝,坚持不肯卖给别人,并命令子孙将其代代相传。令人惋惜的是,《兰亭集序》传到第七代的时候,王家的世孙智永出家为僧,没有后代,最后只好将《兰亭集序》的真迹传给了他的弟子辩才。
唐太宗获悉《兰亭集序》在辨才和尚手里,就命令监察御史萧翼去“智取”。萧翼到寺庙以后,和辩才和尚谈天论地,二人十分投机。辩才以为遇上知音,有一天“碰巧”谈论到王羲之的书法作品时,他难掩激动之情就把藏于屋梁洞内的真迹拿了出来,萧翼趁其不备偷走了它,转呈给唐太宗。
曾被众多名家临摹仿写入选教材背诵推荐篇目
据史料记载,唐太宗死后,根据他的遗愿,《兰亭集序》也随他一起下葬。不过,对于《兰亭集序》的真实下落史学界仍说法不一,千百年来谁也不知道它最终去向何方。
现在人们可以欣赏到的《兰亭集序》,都是唐代以后的摹本,其中“神龙本”《兰亭集序》是最著名的版本之一。该版本因卷首有唐中宗李显神龙年号小印,故而得名,学界一度认为是唐代书法家冯承素临摹,也有人认为是褚遂良所摹,一直争议不断。
宋拓神龙兰亭序。图片来源:故宫博物院官网古往今来,《兰亭集序》曾被众多名家临摹、仿写,故宫博物院就有数十个版本的藏品,供世人参观、欣赏。普通高中课程标准实验教科书中,《兰亭集序》入选为“古诗文背诵推荐篇目”,相信许多人的学生时代都背诵过这篇旷世杰作。
面对浩瀚宇宙与时间长河时,人类或许只是渺小的一粒尘埃。但优秀文化的魅力却可以跨越时空限制,让不同年代、不同地域、不同背景的人,从中感受到属于自己的思想脉动。(完)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |