点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:佰家富app投注-佰家富app
首页>文化频道>要闻>正文

佰家富app投注-佰家富app

来源:佰家富app官网网址2020-11-20 17:48

  

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

佰家富app投注

意大利航天员引用的《兰亭集序》,竟有这么多故事!******

  中新网北京10月14日电(记者 王诗尧)“仰观宇宙之大,俯察品类之盛,所以游目骋怀,足以极视听之娱,信可乐也”。中国著名书法家王羲之所著《兰亭集序》中一句描绘宇宙景观的古文,近日出现在意大利女航天员萨曼萨·克里斯托福雷蒂的社交媒体上,她在发布一组太空摄影作品时配上了上述文字。

  没想到这篇帖文一经发布便受到国内外网友热议,并获中国外交部发言人点赞。跨越千年,《兰亭集序》的影响力丝毫未减,再度成为时下文化热点。

这位意大利女航天员此前接受采访的视频截图这位意大利女航天员此前接受采访的视频截图

  “天下第一行书”

  《兰亭序》又名《兰亭集序》,是晋代书法家王羲之在会稽(今绍兴)撰写,全文28行,共计324字,被誉为“天下第一行书”。

  东晋穆帝永和九年(公元353年)三月三日,会稽内史王羲之邀约谢安、孙绰等41名文人雅士和家族子弟相聚山阴之兰亭,大家一起饮酒赋诗、畅叙幽情。会上26人赋诗41首,并聚诗成集,为《兰亭集》,王羲之乘兴为他们书写序文手稿,曰《兰亭集序》。

资料图为唐·冯承素(传)摹兰亭序帖卷。向一鹏 摄资料图为唐·冯承素(传)摹兰亭序帖卷。向一鹏 摄

  据说次日王羲之酒醒之后发现自己写得甚好,只是有几个字不满意,又复书序文十余遍,始终不得其妙。于是他涂改了几字,留下这篇被历代书界奉为极品的《兰亭集序》。

  《兰亭集序》全文没有一个字写法相同,仅一个“之”字就有二十余种写法。明代书画家董其昌曾在《画禅室随笔》中写道:“右军《兰亭序》,章法为古今第一,其字皆为映带而生,或小或大,随手所如,皆入法则,所以为神品也。”

资料图:位于绍兴的兰亭书法博物馆 项菁 摄资料图:位于绍兴的兰亭书法博物馆 项菁 摄

  真迹下落不明 曾被唐太宗重金悬赏

  然而,就是这件被誉为“贵越群品,古今莫二”的书法极品,真迹至今下落不明,流传作品皆为临摹之作。

  其实,王羲之成为千古留名的“书圣”,与历代帝王对他的推崇离不开关系。而他的头号粉丝,就是唐太宗李世民。

  唐代《徐氏法书记》记载:“太宗於右军之书,特留睿赏,贞观初下诏购求,殆尽遗逸”。彼时刚当上皇帝的唐太宗,就已经急不可待地筹划要把王羲之的全部作品买回来,可是最为著名的《兰亭集序》却怎么都找不到,于是命人到处搜集,并重金悬赏。

资料图:王羲之墓 项菁 摄资料图:王羲之墓 项菁 摄

  早在《兰亭集序》写成之后,王羲之就把它视作传家宝,坚持不肯卖给别人,并命令子孙将其代代相传。令人惋惜的是,《兰亭集序》传到第七代的时候,王家的世孙智永出家为僧,没有后代,最后只好将《兰亭集序》的真迹传给了他的弟子辩才。

  唐太宗获悉《兰亭集序》在辨才和尚手里,就命令监察御史萧翼去“智取”。萧翼到寺庙以后,和辩才和尚谈天论地,二人十分投机。辩才以为遇上知音,有一天“碰巧”谈论到王羲之的书法作品时,他难掩激动之情就把藏于屋梁洞内的真迹拿了出来,萧翼趁其不备偷走了它,转呈给唐太宗。

  曾被众多名家临摹仿写入选教材背诵推荐篇目

  据史料记载,唐太宗死后,根据他的遗愿,《兰亭集序》也随他一起下葬。不过,对于《兰亭集序》的真实下落史学界仍说法不一,千百年来谁也不知道它最终去向何方。

  现在人们可以欣赏到的《兰亭集序》,都是唐代以后的摹本,其中“神龙本”《兰亭集序》是最著名的版本之一。该版本因卷首有唐中宗李显神龙年号小印,故而得名,学界一度认为是唐代书法家冯承素临摹,也有人认为是褚遂良所摹,一直争议不断。

宋拓神龙兰亭序。图片来源:故宫博物院官网宋拓神龙兰亭序。图片来源:故宫博物院官网

  古往今来,《兰亭集序》曾被众多名家临摹、仿写,故宫博物院就有数十个版本的藏品,供世人参观、欣赏。普通高中课程标准实验教科书中,《兰亭集序》入选为“古诗文背诵推荐篇目”,相信许多人的学生时代都背诵过这篇旷世杰作。

  面对浩瀚宇宙与时间长河时,人类或许只是渺小的一粒尘埃。但优秀文化的魅力却可以跨越时空限制,让不同年代、不同地域、不同背景的人,从中感受到属于自己的思想脉动。(完)

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

推荐阅读
佰家富app下载把科技穿在身上,既有温度也有风度
2024-09-17
佰家富app骗局如何看突如其来的六连阴
2024-05-15
佰家富app官网一体式运动座椅 中华V9最新内饰谍照曝光
2024-05-07
佰家富app客户端下载NPL战队原班人马全部解散为引入STK整队
2024-01-06
佰家富app软件内蒙古邢云被开除党籍 落马时已退休近3年
2024-07-19
佰家富app登录 崔康熙战术打法仍难令人信服
2024-09-16
佰家富app客户端交易所:上周新增报会企业13家
2024-06-14
佰家富app注册网中超比埃拉戴帽张10破门 国安4-1一方7连胜破纪录
2024-06-09
佰家富app下载Selina究竟有没有跟张轩睿在一起?
2024-10-11
佰家富app走势图吴奇隆当爸微博报喜:母子平安
2024-08-19
佰家富app下载app[光明时评]为北京外摆经营试点点个赞
2024-08-29
佰家富app邀请码宫廷瑞兽登上3X3黄金联赛 幽默化解无球尴尬
2024-07-02
佰家富app技巧俄媒称现代航母依旧是“海上霸主”?
2023-12-17
佰家富app开奖结果组图:蔡依林宁静“斗胸”超抢镜 张雨绮收起性感玩淑女风
2024-04-23
佰家富app代理 花费1000元买一把键盘是什么心理?
2024-08-25
佰家富app漏洞清华大学发布AI使能平台“紫为云” 加速AI落地
2024-09-04
佰家富app官方 毛宁:青春正好 梦想正当时
2024-02-04
佰家富app官网平台赵一德:大力发展县域经济 着力缩小“三大差距”
2024-03-19
佰家富app5月新机前瞻:除了华为三星外 还有这些旗舰机可选
2024-08-10
佰家富app平台西部10省份披露今年一季度GDP数据 云南增速第一
2024-07-17
佰家富app攻略突生变故!小伙接电话后崩溃大哭
2024-02-27
佰家富app返点大型真香现场之股神篇
2023-12-24
佰家富app必赚方案交通运输部:取消高速公路省界收费站方案将出台
2024-03-31
佰家富app计划又一私募冠军陨落!上亿股权拍卖无人问津
2024-06-01
加载更多
佰家富app地图